PPG-engenharia-da-informacao

Ricardo Suyama

Possui graduação em Engenharia Elétrica pela Universidade Estadual de Campinas (2001), mestrado em Engenharia Elétrica pela Universidade Estadual de Campinas (2003) e doutorado em Engenharia Elétrica pela Universidade Estadual de Campinas (2007). Atualmente é professor associado nível II na Universidade Federal do ABC (UFABC). Tem experiência na área de Processamento Digital de Sinais, atuando principalmente nas áreas de Separação de Fontes, Melhoramento de Sinais, Filtragem Adaptativa e Inteligência Artificial aplicada no processamento de sinais. (Texto informado pelo autor)

  • http://lattes.cnpq.br/6146944142372232 (22/08/2024)
  • Rótulo/Grupo: PERMANENTE
  • Bolsa CNPq: Nível 2
  • Período de análise:
  • Endereço: Universidade Federal do ABC, Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas. Secretaria CECS Av. dos Estados, 5001 Bloco B, 9o andar Bangu 09210170 - Santo André, SP - Brasil Telefone: (11) 49968276 Ramal: 8276 Fax: (11) 114496008 URL da Homepage: http://www.ufabc.edu.br
  • Grande área: Engenharias
  • Área: Engenharia Elétrica
  • Citações: Google Acadêmico

Produção bibliográfica

Produção técnica

Produção artística

Orientações em andamento

Supervisões e orientações concluídas

Projetos de pesquisa

Prêmios e títulos

Participação em eventos

Organização de eventos

Lista de colaborações


Produção bibliográfica

Produção técnica

Produção artística

Orientações em andamento

Supervisões e orientações concluídas

Projetos de pesquisa

  • Total de projetos de pesquisa (3)
    1. 2023-Atual. BI0S - Brazilian Institute of Data Science
      Descrição: O Centro de Pesquisa em Inteligência Artificial - Brazilian Institute of Data Science (BI0S) tem como principal objetivo desenvolver soluções de estado da arte em ciência dos dados e inteligência artificial (IA), propondo soluções para problemas relevantes e conectando a academia, empresas, startups, a sociedade e o setor público em um ecossistema integrado de inovação. Ele vai contribuir com o desenvolvimento científico-tecnológico e social em áreas estratégicas que surgirão da interação entre todos os atores envolvidos. Ademais, o Centro vai incentivar uma cultura de empreendedorismo, visando explorar o potencial de suas propostas. Também serão promovidas ações de difusão de conhecimento, buscando atrair novos talentos do ensino médio e dos primeiros anos da faculdade, e promover cursos de extensão para profissionais. Inicialmente, o Centro focará em duas áreas estratégicas no plano nacional: Saúde (trilha focal) e Agropecuária (Agro, trilha secundária). Na Trilha Saúde, o foco de atuação do BI0S se dará no enfrentamento de problemas associados à saúde da mulher nos diversos momentos de seu ciclo de vida. Numa primeira etapa, os principais problemas que serão abordados estão relacionados à morte materna e neonatal e à mortalidade precoce de mulheres por doenças preveníveis e potencialmente curáveis, como o câncer de colo e câncer de mama. Outros problemas de interesse incluem ferramentas de IA para diagnóstico médico e para o desenvolvimento de remédios. Na trilha Agro, o objetivo principal é ampliar a disponibilidade e a qualidade de informações úteis para a tomada de decisões na agropecuária, tanto em escala local como regional, ou mesmo global, com soluções para a agricultura de precisão, e abordando também problemas tais como os impactos das mudanças climáticas. Também serão desenvolvidos métodos para otimização do uso de recursos agrícolas, a para a integração sustentável entre a indústria e o ambiente. Além das trilhas Saúde e Agro, o BI0S conta com uma trilha de Método, cujo objetivo é subsidiar as frentes de aplicação com ferramentas de IA. Finalmente, cabe destacar que a atuação em duas trilhas temáticas posiciona o BI0S como um centro capaz de abordar problemas transversais de grande interesse atual e que se encontram na fronteira entre as trilhas Saúde e Agro, como as relações entre uma determinada estratégia de cultivo e seus efeitos na saúde humana.. Situação: Em andamento; Natureza: Pesquisa. Integrantes: Ricardo Suyama - Integrante / Romis Ribeiro de Faissol Attux - Integrante / Leonardo Tomazeli Duarte - Integrante / João Marcos Travassos Romano - Coordenador / Denis Gustavo Fantinato - Integrante / Guilherme Palermo Coelho - Integrante / Cristiano Torezzan - Integrante / Sueli Irene Rodrigues Costa - Integrante / Washington Alves de Oliveira - Integrante / João Batista Florindo - Integrante / Priscila Cristina Berbert Rampazzo - Integrante / Alvaro de Olveira D'Antonia - Integrante / Renato Machado - Integrante / Henrique Nogueira de Sá Earp - Integrante / Rodolfo de Carvalho Pacagnella - Integrante / Priscila Pereira Coltri - Integrante / Jorge Moreira de Souza - Integrante / Niro Higuchi - Integrante / Peter Sussner - Integrante / Rosângela Ballini - Integrante.
      Membro: Ricardo Suyama.
      Descrição: O Centro de Pesquisa em Inteligência Artificial - Brazilian Institute of Data Science (BI0S) tem como principal objetivo desenvolver soluções de estado da arte em ciência dos dados e inteligência artificial (IA), propondo soluções para problemas relevantes e conectando a academia, empresas, startups, a sociedade e o setor público em um ecossistema integrado de inovação. Ele vai contribuir com o desenvolvimento científico-tecnológico e social em áreas estratégicas que surgirão da interação entre todos os atores envolvidos. Ademais, o Centro vai incentivar uma cultura de empreendedorismo, visando explorar o potencial de suas propostas. Também serão promovidas ações de difusão de conhecimento, buscando atrair novos talentos do ensino médio e dos primeiros anos da faculdade, e promover cursos de extensão para profissionais. Inicialmente, o Centro focará em duas áreas estratégicas no plano nacional: Saúde (trilha focal) e Agropecuária (Agro, trilha secundária). Na Trilha Saúde, o foco de atuação do BI0S se dará no enfrentamento de problemas associados à saúde da mulher nos diversos momentos de seu ciclo de vida. Numa primeira etapa, os principais problemas que serão abordados estão relacionados à morte materna e neonatal e à mortalidade precoce de mulheres por doenças preveníveis e potencialmente curáveis, como o câncer de colo e câncer de mama. Outros problemas de interesse incluem ferramentas de IA para diagnóstico médico e para o desenvolvimento de remédios. Na trilha Agro, o objetivo principal é ampliar a disponibilidade e a qualidade de informações úteis para a tomada de decisões na agropecuária, tanto em escala local como regional, ou mesmo global, com soluções para a agricultura de precisão, e abordando também problemas tais como os impactos das mudanças climáticas. Também serão desenvolvidos métodos para otimização do uso de recursos agrícolas, a para a integração sustentável entre a indústria e o ambiente. Além das trilhas Saúde e Agro, o BI0S conta com uma trilha de Método, cujo objetivo é subsidiar as frentes de aplicação com ferramentas de IA. Finalmente, cabe destacar que a atuação em duas trilhas temáticas posiciona o BI0S como um centro capaz de abordar problemas transversais de grande interesse atual e que se encontram na fronteira entre as trilhas Saúde e Agro, como as relações entre uma determinada estratégia de cultivo e seus efeitos na saúde humana.. Situação: Em andamento; Natureza: Pesquisa. Integrantes: Kenji Nose Filho - Integrante / João Marcos Travassos Romano - Coordenador / Leonardo Tomazeli Duarte - Integrante / Romis Attux - Integrante / Denis Gustavo Fantinato - Integrante / ALINE NEVES - Integrante / André Kazuo Takahata - Integrante / Ricardo Suyama - Integrante / Murilo Bellezoni Loiola - Integrante / Filipe Ieda Fazanaro - Integrante / Claudio José Bordin Júnior - Integrante / Guilherme Palhermo Coelho - Integrante / Cristiano Torezzan - Integrante / Sueli Irene Rodrigues Costa - Integrante / Washington Alves de Oliveira - Integrante / João Batista Florindo - Integrante / Priscila Cristina Berbert Rampazzo - Integrante / Alvaro de Olveira D'Antonia - Integrante / Renato Machado - Integrante / Henrique Nogueira de Sá Earp - Integrante / Rodolfo de Carvalho Pacagnella - Integrante / Priscila Pereira Coltri - Integrante / Jorge Moreira de Souza - Integrante / Niro Higuchi - Integrante / Peter Sussner - Integrante / Rosângela Ballini - Integrante / Ana Paula Romani - Integrante / Priscyla W. T. de Azevedo Simões - Integrante.
      Membro: Kenji Nose Filho.
      Descrição: O Centro de Pesquisa em Inteligência Artificial - Brazilian Institute of Data Science (BI0S) tem como principal objetivo desenvolver soluções de estado da arte em ciência dos dados e inteligência artificial (IA), propondo soluções para problemas relevantes e conectando a academia, empresas, startups, a sociedade e o setor público em um ecossistema integrado de inovação. Ele vai contribuir com o desenvolvimento científico-tecnológico e social em áreas estratégicas que surgirão da interação entre todos os atores envolvidos. Ademais, o Centro vai incentivar uma cultura de empreendedorismo, visando explorar o potencial de suas propostas. Também serão promovidas ações de difusão de conhecimento, buscando atrair novos talentos do ensino médio e dos primeiros anos da faculdade, e promover cursos de extensão para profissionais. Inicialmente, o Centro focará em duas áreas estratégicas no plano nacional: Saúde (trilha focal) e Agropecuária (Agro, trilha secundária). Na Trilha Saúde, o foco de atuação do BI0S se dará no enfrentamento de problemas associados à saúde da mulher nos diversos momentos de seu ciclo de vida. Numa primeira etapa, os principais problemas que serão abordados estão relacionados à morte materna e neonatal e à mortalidade precoce de mulheres por doenças preveníveis e potencialmente curáveis, como o câncer de colo e câncer de mama. Outros problemas de interesse incluem ferramentas de IA para diagnóstico médico e para o desenvolvimento de remédios. Na trilha Agro, o objetivo principal é ampliar a disponibilidade e a qualidade de informações úteis para a tomada de decisões na agropecuária, tanto em escala local como regional, ou mesmo global, com soluções para a agricultura de precisão, e abordando também problemas tais como os impactos das mudanças climáticas. Também serão desenvolvidos métodos para otimização do uso de recursos agrícolas, a para a integração sustentável entre a indústria e o ambiente. Além das trilhas Saúde e Agro, o BI0S conta com uma trilha de Método, cujo objetivo é subsidiar as frentes de aplicação com ferramentas de IA. Finalmente, cabe destacar que a atuação em duas trilhas temáticas posiciona o BI0S como um centro capaz de abordar problemas transversais de grande interesse atual e que se encontram na fronteira entre as trilhas Saúde e Agro, como as relações entre uma determinada estratégia de cultivo e seus efeitos na saúde humana.. Situação: Em andamento; Natureza: Pesquisa. Integrantes: Filipe Ieda Fazanaro - Coordenador / Ricardo Suyama - Integrante / Romis Attux - Integrante / Leonardo Tomazeli Duarte - Integrante / André Kazuo Takahata - Integrante / Denis Gustavo Fantinato - Integrante / João Marcos Travassos Romano - Integrante / Guilherme Palermo Coelho - Integrante / Cristiano Torezzan - Integrante / Sueli Irene Rodrigues Costa - Integrante / Washington Alves de Oliveira - Integrante / João Batista Florindo - Integrante / Priscila Cristina Berbert Rampazzo - Integrante / Alvaro de Olveira D'Antonia - Integrante / Renato Machado - Integrante / Henrique Nogueira de Sá Earp - Integrante / Rodolfo de Carvalho Pacagnella - Integrante / Priscila Pereira Coltri - Integrante / Jorge Moreira de Souza - Integrante / Niro Higuchi - Integrante / Peter Sussner - Integrante / Rosângela Ballini - Integrante.
      Membro: Filipe Ieda Fazanaro.
    2. 2023-Atual. Pesquisa interdisciplinar de técnicas de aprendizado de máquina e inteligência artificial para desenvolvimento de tecnologias de processamento de sinais, imagens e linguagem natural
      Descrição: Este projeto tem como objetivo consolidar grupo de pesquisa interdisciplinar com pesquisadores da área da engenharia de informação, engenharia biomédica, linguística, computação e medicina, capaz de desenvolver aplicações de aprendizado de máquina e inteligência artificial na realização de processamento de sinais, imagens e linguagem natural. A pesquisa se dará em frentes de pesquisa que já vem sendo realizadas pelo proponente como utilização de técnicas de aprendizado de máquina para extração de biomarcadores de Doença de Parkinson a partir de sinais de potencial de campo local (LFP) adquirido durante cirurgia de implantação de dispositivo de estimulação cerebral profunda (DBS) e utilização de redes neurais profundas em tomografia de impedância elétrica para auxílio a diagnóstico de acidente vascular cerebral (AVC). Além disso, na linha de pesquisa em processamento de linguagem natural será abordada a caracterização de textos sobre COVID-19, com objetivo de se identificar palavras biomédicas automaticamente com uso de redes neurais profundas, e serão estudados voicebots para plataformas de telemonitoramento de pacientes baseado em cuidado híbrido. (AU). Situação: Em andamento; Natureza: Pesquisa. Integrantes: Ricardo Suyama - Integrante / Margarethe Born Steinberger-Elias - Integrante / André Kazuo Takahata - Coordenador / Diogo Coutinho Soriano - Integrante / Celso Setsuo Kurashima - Integrante / Priscyla Waleska Targino de Azevedo Simões - Integrante / Fernando Silva de Moura - Integrante / Lilan Berton - Integrante / Maria Sheila Guimarães Rocha - Integrante / Fabio Luiz Franceschi Godinho - Integrante.
      Membro: Ricardo Suyama.
    3. 2022-Atual. Explorando técnicas de Inteligência Artificial para o Processamento de Sinais
      Descrição: A grande evolução na área de inteligência artificial (IA), especialmente a partir da década de 2000, está associada a resultados impactantes decorrentes da utilização de abordagens de aprendizado baseado em estruturas ditas profundas, até então pouco utilizadas devido à sua alta complexidade computacional. Desde então, esta abordagem vem ocupando uma posição de destaque na pesquisa em IA e, naturalmente, a área de processamento de sinais tem se beneficiado com o desenvolvimento de novas técnicas que aliam as técnicas previamente desenvolvidas a novas ferramentas de inteligência artificial. Conforme amplamente demonstrado na literatura, a aplicação destes novos paradigmas, tem resultado, via de regra, em ganhos relevantes de desempenho. Entretanto, em geral, as técnicas apresentam um elevado custo computacional, além de exigir uma grande quantidade de dados para o treinamento das estruturas, evidenciando que ainda existem diversas questões importantes a serem investigadas na área.No presente projeto, pretende-se dar continuidade à pesquisa já iniciada na área, buscando técnicas de processamento de sinais baseadas em IA, tendo como referência o problema geral de separação de fontes. Os trabalhos devem se desenvolver em três frentes de pesquisa: Investigação de algoritmos baseados em IA para problema de separação de sinais, com particular interesse por métodos capazes de estimar os sinais de maneira não-supervisionada; Investigação de métodos baseados em IA para o melhoramento de sinais, buscando explorar estruturas flexíveis e formas de incorporar informação a priori sobre o problema para minimizar a necessidade de dados para treinamento e o custo computacional envolvido; e Investigação sobre métodos de machine learning em problemas inversos, que explorem características dos dados para realizar a regularização, explícita ou implicitamente, do problema de otimização associado.. Situação: Em andamento; Natureza: Pesquisa. Integrantes: Ricardo Suyama - Coordenador.
      Membro: Ricardo Suyama.

Prêmios e títulos

  • Total de prêmios e títulos (0)

    Participação em eventos

    • Total de participação em eventos (0)

      Organização de eventos

      • Total de organização de eventos (0)

        Lista de colaborações

        • Colaborações endôgenas (7)
          • Ricardo Suyama ⇔ André Kazuo Takahata (4.0)
            1. FERREIRA, LEONARDO A. ; BERALDO, ROBERTO G. ; TAKAHATA, ANDRÉ K. ; SUYAMA, RICARDO. Restoring severely out-of-focus blurred text images with Deep Image Prior. Inverse Problems and Imaging. v. 17, p. 969-992, issn: 1930-8337, 2023.
            2. PINHEIRO, Talita Santos ; YAHATA, Erika ; SANTOS, Pablo Deoclecia dos ; OLIVEIRA, Fellipe Soares de ; TAKAHATA, Andre Kazuo ; SUYAMA, Ricardo ; TANAKA, Harki ; OLIVEIRA, TIAGO RIBEIRO ; ROMANI, Ana Paula ; SIMÕES, Priscyla Waleska. Machine Learning e Análise Multivariada aplicados à Sobrevida do Câncer Mama. journal of health informatics. v. 14, p. 53-58, issn: 2175-4411, 2022.
            3. Rodrigues, Paula G. ; Filho, Carlos A. Stefano ; Takahata, André K. ; Suyama, Ricardo ; Attux, Romis ; Castellano, Gabriela ; Sato, João R. ; Nasuto, Slawomir J. ; Soriano, Diogo C.. Can Dynamic Functional Connectivity Be Used to Distinguish Between Resting-State and Motor Imagery in EEG-BCIs?. Studies in Computational Intelligence. 1ed. Em: Benito, R.M.; Cherifi, C.; Cherifi, H.; Moro, E.; Rocha, L.M.; Sales-Pardo, M.. (Org.). Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence. 1ed. : Springer International Publishing. 2022.v. 1016, p. 688-699.
            4. TAKAHATA, Andre Kazuo ; Simões, Priscyla Waleska ; SUYAMA, Ricardo. Aplicação de Inferência Bayesiana. Em: Antonio Valerio Netto, Lilian Berton, André Kazuo Takahata. (Org.). Ciência de Dados e Inteligência Artificial para Saúde Digital. 1ed.São Paulo / SP. : Editora dos Editores. 2021.v. 1, p. 41-63.

          • Ricardo Suyama ⇔ Aline de Oliveira Neves Panazio (3.0)
            1. GOIS, LUCAS ; Suyama, Ricardo ; Fantinato, Denis ; NEVES, ALINE. Relationship Between Criteria Based on Correntropy and Second Order Statistics for Equalization of Communication Channels. IEEE SIGNAL PROCESSING LETTERS. v. 29, p. 1317-1321, issn: 1070-9908, 2022.
            2. LUCENA, A. M. ; MORAES, C. P. A. ; NOSE-FILHO, K. ; FANTINATO, D. G. ; NEVES, A. ; SUYAMA, R.. Musical Instruments Recognition using Machine Learning Techniques: MLP and SVM. Em: Brazilian Technology Symposium (BTSym'20), 2020.
            3. GOIS, L. ; FANTINATO, D. G. ; SUYAMA, Ricardo ; NEVES, A. O.. Relações entre Critérios baseados na Correntropia e Estatísticas de Segunda Ordem para Equalização de Canais de Comunicação. Em: Brazilian Technology Symposium (BTSym'20), 2020.

          • Ricardo Suyama ⇔ Diogo Coutinho Soriano (3.0)
            1. BULHÕES DA SILVA COSTA, THIAGO ; FERNANDA SUAREZ URIBE, LUISA ; NEGREIROS DE CARVALHO, SARAH ; COUTINHO SORIANO, DIOGO ; Castellano, Gabriela ; Suyama, Ricardo ; Attux, Romis ; PANAZIO, CRISTIANO. Channel capacity in brain-computer interfaces. Journal of Neural Engineering. v. 17, p. 016060, issn: 1741-2552, 2020.
            2. Rodrigues, Paula G. ; Filho, Carlos A. Stefano ; Takahata, André K. ; Suyama, Ricardo ; Attux, Romis ; Castellano, Gabriela ; Sato, João R. ; Nasuto, Slawomir J. ; Soriano, Diogo C.. Can Dynamic Functional Connectivity Be Used to Distinguish Between Resting-State and Motor Imagery in EEG-BCIs?. Studies in Computational Intelligence. 1ed. Em: Benito, R.M.; Cherifi, C.; Cherifi, H.; Moro, E.; Rocha, L.M.; Sales-Pardo, M.. (Org.). Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence. 1ed. : Springer International Publishing. 2022.v. 1016, p. 688-699.
            3. GIULIANI, HENRIQUE LUIZ VONI ; PAULA, PATRICK DE ; RODRIGUES, PAULA G ; SORIANO, DIOGO ; Suyama, Ricardo ; FANTINATO, DENIS. Influência da Janela de Estimação no Desempenho de Classificação em Sistemas BCI-SSVEP. Em: XXXIX Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, v. 1, 2021.

          • Ricardo Suyama ⇔ Kenji Nose Filho (3.0)
            1. MOURA, MATEUS DOS SANTOS ; LUCENA, ALEXANDRE MICCHELETI ; FILHO, KENJI NOSE ; Suyama, Ricardo. Source Extraction based on Binary Masking and Machine Learning. Em: 2021 Workshop on Communication Networks and Power Systems (WCNPS), p. 1, 2021.
            2. LUCENA, A. M. ; MORAES, C. P. A. ; NOSE-FILHO, K. ; FANTINATO, D. G. ; NEVES, A. ; SUYAMA, R.. Musical Instruments Recognition using Machine Learning Techniques: MLP and SVM. Em: Brazilian Technology Symposium (BTSym'20), 2020.
            3. LUCENA, ALEXANDRE ; FILHO, KENJI ; SUYAMA, RICARDO. Blind Source Separation based on Semblance Beamforming. Em: XXXVIII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais - SBrT 2020, 2020.

          • Ricardo Suyama ⇔ Murilo Bellezoni Loiola (3.0)
            1. DA CRUZ, PEDRO IVO ; SUYAMA, Ricardo ; LOIOLA, MURILO BELLEZONI. Increasing key randomness in physical layer key generation based on RSSI in LoRaWAN devices. Physical Communication. v. 49, p. 101480, issn: 1874-4907, 2021.
            2. CRUZ, P. I. ; LUCENA, A. M. ; SUYAMA, Ricardo ; LOIOLA, M. B.. Improving Physical Layer Secret Key Generation in Fast Fading Environments Using Prediction. Em: XXXIX Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2021), 2021.
            3. CRUZ, P. I. ; DAMASCENO, M. C. ; SUYAMA, Ricardo ; LOIOLA, M. B.. Increasing cross-correlation in LoRaWAN RSSI based key generation with DCT and PCA. Em: XXXVIII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais - SBrT 2020, 2020.

          • Ricardo Suyama ⇔ Priscyla Waleska Targino de Azevedo Simões (3.0)
            1. YAHATA, ERIKA ; WINNIKOW, ERIK PAUL ; Suyama, Ricardo ; SIMÕES, PRISCYLA WALESKA. Explicabilidade em Modelos Preditivos de Machine Learning no Câncer de Mama. journal of health informatics. v. 15, p. 1-14, issn: 2175-4411, 2023.
            2. PINHEIRO, Talita Santos ; YAHATA, Erika ; SANTOS, Pablo Deoclecia dos ; OLIVEIRA, Fellipe Soares de ; TAKAHATA, Andre Kazuo ; SUYAMA, Ricardo ; TANAKA, Harki ; OLIVEIRA, TIAGO RIBEIRO ; ROMANI, Ana Paula ; SIMÕES, Priscyla Waleska. Machine Learning e Análise Multivariada aplicados à Sobrevida do Câncer Mama. journal of health informatics. v. 14, p. 53-58, issn: 2175-4411, 2022.
            3. TAKAHATA, Andre Kazuo ; Simões, Priscyla Waleska ; SUYAMA, Ricardo. Aplicação de Inferência Bayesiana. Em: Antonio Valerio Netto, Lilian Berton, André Kazuo Takahata. (Org.). Ciência de Dados e Inteligência Artificial para Saúde Digital. 1ed.São Paulo / SP. : Editora dos Editores. 2021.v. 1, p. 41-63.

          • Ricardo Suyama ⇔ Filipe Ieda Fazanaro (2.0)
            1. SILVA, A. M. ; LIMA, CAIO ; Fazanaro, Filipe I. ; Suyama, Ricardo. Software para Captura de Categorias de Posições de Ângulos de Flexão e Extensão do Cotovelo Conjuntamente com os Sinais sEMG. Em: IX Congresso Latinoamericano de Engenharia Biomédica & XXVIII Congresso Brasileiro de Engenharia Biomédica, 2022.
            2. LIMA, CAIO ; TASCHETI MELLO, CAIO ; Suyama, Ricardo ; IEDA FAZANARO, FILIPE. Detecção de Limiar de Força Aplicada em uma Prótese de Antebraço. Em: Congresso Brasileiro de Automática 2020, v. 2, 2020.




        Data de processamento: 16/11/2024 16:25:58