
A Comparison of Algorithms Playing EvoMan
Gabriel-Codrin Cojocaru

Faculty of Computer Science
“Al. I. Cuza” University

Iasi, Romania
gabriel.cojocaru@info.uaic.ro

Sergiu-Andrei Dinu
Faculty of Computer Science

“Al. I. Cuza” University
Iasi, Romania

sergiu.dinu@info.uaic.ro

Eugen Croitoru
Dept. of Computer Science

“Al. I. Cuza” University
Iasi, Romania

eugennc@uaic.ro

Abstract—This paper describes a comparison between algo-
rithms for evolving agents for the game Evoman. We have tried
a cascade ensemble method, starting with a fast algorithm,
and exploiting the found solutions with a slower algorithm.
The algorithms used for the first stage are Q-learning, Genetic
Algorithms and Particle Swarm Optimization. All are searching
for the optimal weights of a fixed-structure neural network.
Both the GA and the PSO algorithms were tested with sparse
and iterative evaluations. The best explorative algorithm was
the sparse PSO. The exploitative algorithm we have used is the
Proximal Policy Optimization algorithm. Using PPO with random
initialization led to better results than any ensemble method,
and often, better results than the upper bound provided in the
problem statement. However, we also show significant overfitting
in our approach.

Index Terms—game-playing agent, Artificial Intelligence, Evo-
Man, Genetic Algorithm, Reinforcement Learning, Q-learning,
Neuroevolution, Particle Swarm Optimization, Proximal Policy
Optimization

I. INTRODUCTION

This paper presents our solution for the ”Evoman: Game-
playing Competition for WCCI 2020” [1]. We train an agent
playing the 2D shooting game Evoman [2]. We have tried
an ensemble cascade method with two stages: For the first
stage we have tested algorithms that either found accept-
able solutions quickly, or had a high explorative bias. The
algorithms we considered for this stage are Q-Learning [6],
Genetic Algorithms [7] and Particle Swarm Optimization [8].
The structure of the ANN was fixed, and the optimal weights
were searched. Both the GA and the PSO were tested with a
sparse and iterative evaluation approach.

From these quickly-found starting points, we sought to
refine the results using a slower Proximal Policy Optimization
[10] algorithm. While PSO was the best first-stage algorithm,
we found that a random weight initialization worked best with
PPO. This fixed-topology, generic PPO is sometimes (4 ouf
of 8 opponents) able to surpass the specialized NEAT upper
bound provided in the problem description.

We also find significant overfit. The problem requires select-
ing 4 opponents for training, leaving the other 4 for testing.
Our method performs very well on the first 4, and worse on
the rest. Additionally, the best agent at the end of training is
surpassed, in testing, by an earlier-trained solution.

Fig. 1. Sensors available for the player [2].

II. PROBLEM DESCRIPTION

A. Environment

EvoMan [2], [3] is a framework for testing competitive
game-playing agents. This framework is inspired by Mega
Man II [5], the game created by Capcom. EvoMan is a 2D
shooting game where the player controls an agent playing
against an opponent. The agent will collect information about
the environment through 20 sensors (Fig 1):

• 16 correspond to horizontal and vertical distances to a
maximum of 8 different opponent projectiles.

• 2 correspond to the horizontal and vertical distance to the
enemy.

• 2 describe the directions the player and the enemy is
facing

The 5 actions which the agent may take are: walk left, walk
right, shoot, press jump, release jump.

The player and opponent start with 100 life points. On each
hit receives, their life points decrease. The player wins by
reducing the opponent’s life points to 0, and lose if their life
points are reduced to 0 first.

In the original Capcom game the player would have to
beat 8 opponents and acquire their weapons once they are
defeated. The additional difficulty of EvoMan comes from the
fact that the player has to defeat all the opponents using only
the starting weapon. Each opponent can be fought at a specific
difficulty level. The difficulty level is an integer greater or

equal than 1 which is translated into a factor for the damage
taken and damage given by the player; the higher the difficulty
level the lower the damage given, and the higher the damage
taken. The framework is freely available1. There is also an
extensive documentation available2.

B. Problem

Defeating an opponent is relatively easy when using spe-
cialized models against a specific enemy. The authors of the
EvoMan framework trained multiple specialized agents against
each opponent. After playing a game, the formula for the gain
by which an agent is evaluated is:

gain = 100.01 + player life− enemy life (1)

The best possible value for gain is 200.01, for a player which
defeats the opponent without getting hit. The highest final
gain is 185.67 (as a harmonic average of 8 values) [2] and
was obtained with the NEAT [9] algorithm.

The problem we are trying to solve is a generalization of
the one above. We are to train an agent against 4 enemies
and then test its performance against all 8. The final score
metric of an agent is the harmonic mean of the gains against
all enemies. The combination of 4 enemies we are to train
the agent against is not fixed, but left as a free choice. The
difficulty level for solving this problem is 2 for all enemies in
training and testing, but we did some exploratory work with
greater levels of difficulty.

The specifications above, like the number of enemies chosen
for training or the difficulty level, come directly from a
competition organized by the creators of the framework [1].

III. APPROACH

Our intention was to develop a cascade ensemble method
where a fast algorithm could provide a better starting point to
a slower algorithm. We expected the classic Q-learning [6] al-
gorithm to quickly obtain a decent gain. Two more exploratory
algorithms we have considered are Genetic Algorithms [7]
and Particle Swarm Optimization [8]. The slower algorithm,
intended to exploit the starting points provided by the first
algorithm in the cascade, is a Proximal Policy Optimization
[10] algorithm.

To find the best first-stage algorithm we have made the
following changes (which had no impact in the training and
testing for the final solution to the problem, other than guiding
the choice of algorithm):

• we have increased the difficulty from the default 2 up to
5.

• the evaluation is made only on the second opponent due
to the varied environment.

1https://github.com/karinemiras/evoman framework
2https://github.com/karinemiras/evoman framework/blob/master/evoman1.

0-doc.pdf

• the gain function was modified as in Karine Miras’
analysis [13] to:

fitness = 0.9 · (100− enemy life) + 0.1 · player life

− ln(nr of game timesteps) (2)

The best possible value for the fitness is 100.
The best exploratory algorithm would be trained on four

enemies and used in cascade with PPO, without the changes
mentioned in this section.

A. Q-Learning

We used a classic Q-Learning ANN to predict the reward
function for each possible move (left, right, shoot, press jump,
release jump) from a given state. We then take the action with
the highest predicted reward. The input of this Neural Network
is composed of the current game sensors, the previous 2 game
sensor inputs, and the previous 2 moves taken (62inputs).

The ANN used for experiments has 2 hidden layers with
32 neurons each. Each layer has l2 regularization applied to
it, each weight has a decay of 0.01, and each neuron has
a Logistic Sigmoid activation function. After each predicted
move, we update the neural network using backpropagation.
We compute the reward as the difference between the current
score and the previous score:
(prev enemy health − curr enemy health) · 0.8 +

(curr player health− prev player health) · 0.2
A game ends when either the agent or the enemy lose

all life. We have trained the agent on 5000 games. The
(arithmetic) average number of frames per game for the best
model is 287.

B. Evolving Neural Network Weights with Genetic Algorithms

We used Genetic Algorithms to evolve the weights of fixed-
topology ANNs.

1) Sparse Reward Genetic Algorithm: The second algo-
rithm is a sparse reward Neuroevolution [4] algorithm. The
reward is defined as ”sparse” because an agent doesn’t find
out how well it’s doing until the end of the game, with no
feedback during the game. An individual represents the binary
encoding of the weights of a Neural Network.

The ANN’s role is to predict the next move using the current
game sensors, the previous 2 game sensor inputs, and the
previous 2 moves (62inputs). We use 2 hidden layers with
32 neurons for each individual.

We start with randomly initialized ANN weights. The
weights used for the ANN are values ∈ [−2, 2], with a
precision of 6 digits.

Since we are representing the individuals as bitstrings we
were able to apply a Simple Genetic Algorithm [7].

The configurations we have used for the GA are:
• population size: 50
• number of generations: 500
• crossover rate: 0.7
• mutation rate: {0.008, 0.1}
• elitism: 1 individual

We have tried 2 experiments with different mutation rates in
order to observe if a high mutation rate can lead to good
results for the problem, since the role of this GA was chiefly
exploratory in our ensemble.

The solution of the GA is the best individual from the last
generation.

2) Iterative Genetic Algorithm: The next algorithm is an
iterative neuroevolution. It is ”iterative” because the agents
are trained on a small number of game steps first, and then
the number of game steps slowly increases.

After a number of generations, we increase the number of
game timesteps the agents are allowed to train on. The fitness
function is scaled based on the number of game timesteps in
a way that an agent training on fewer timesteps will always
have a fitness lower than an agent training on more timesteps.

C. Searching Neural Network Weights with Particle Swarm
Optimization

We have used Particle Swarm Optimization [8] to search
for the weights of a fixed-topology ANN, which maximize
the fitness function defined at Formula (2). We used the same
ANN topology as with the GA.

The configurations used for the PSO are:
• population size: 30
• number of iterations: 200
• cognitive weight: {0.4, 0.8, 1.5}
• social weight: {0.8, 0.4, 3}
• inertia weight: {constant 1, decreasing from 1 by 0.0035

every iteration}
The same separation between sparse and iterative evalua-

tions was made in the case of PSO, as was in the case of
GA.

We also tried to search with PSO using an uniformly
decreasing inertia weight, starting at 1 and ending at 0.3.

D. Proximal Policy Optimization

We have devoted significant computational resources to a
PPO [10], expecting it to exploit and refine solutions. For this
stage, we have used the default difficulty of 2; the training
was done on 4 opponents, and the evaluation was done as
described in the Problem Description (Section II).

The configuration we have used for the PPO is:
• randomly initialized weights
• hidden layer sizes: (64, 64)
• steps per epoch: 10000
• epochs: 3000
• gamma: 0.99

• clip ratio: 0.2
• pi lr: 3e− 4
• vf lr: 1e− 3
• train pi iterations: 80
• train v iterations: 80
• lambda: 0.97
• target KL: 0.01

E. Particle Swarm Optimization Cascaded With Proximal Pol-
icy Optimization

The output weight configuration of an Artificial Neural
Network resulted from a PSO search is the starting agent for
PPO. In order to solve the generalized problem, we have made
the following changes to the PSO from the exploratory stage:

• The sizes of the hidden layers were increased from
(32, 32) to (64, 64).

• It is trained on 4 opponents, not only 1.
• The fitness function is the one from the Problem Descrip-

tion (Section II).

The same configuration was used for PPO as in the case of
the PPO with random weights initialization.

IV. EXPERIMENTAL INVESTIGATION

A. Q-Learning

The Q-learning algorithm was the starting point of our
comparison. Even when trained and evaluated against the same
opponent, it would lose every game while inflicting almost no
damage.

B. Genetic Algorithms

The iterative genetic algorithm leads to much better results
than Q-learning (Fig. 2).

We show that a mutation rate of 0.008 leads to better results
than a mutation rate of 0.1 (Fig. 3).

The results of the sparse GA and the iterative GA are not
significantly different (Fig. 4).

C. Particle Swarm Optimization

Both PSO algorithms lead to much better results than either
of the sparse and iterative GA. The iterative PSO leads to
worse results than the sparse PSO. In Fig. 4 we can see that
the best first-stage algorithm is the sparse PSO.

The time advantage of iterative PSO vs. sparse PSO is not
significant (Fig. 5).

We have also searched for good PSO weights for our
problem. In the next stages we use a cognitive weight of 0.4
and a social weight of 0.8, due to its higher result variance
(Fig. 6).

We have also tried two PSO inertia weight updates (Fig. 7).
We continued with the constant inertia weight approach.

After deciding what the starting model should be, we have
tested its performance (Fig. 8) and run time (Fig. 9) on
multiple difficulties.

q_learning ga_iterat ive

algorithm

0

10

20

30

40

50

fi
tn

e
s
s
 (

m
a

x
 1

0
0

)

Q-Learning vs iterat ive GA

Fig. 2. The fitness comparison between Q-learning and iterative genetic
algorithms.

m utat ion_rate= 0.008 m utat ion_rate= 0.1

algorithm

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

fi
tn

e
s
s
 (

m
a

x
 1

0
0

)

Genet ic algorithm s with different m utat ion rates

Fig. 3. The fitness comparison between sparse genetic algorithms with
mutation rate of 0.1 and 0.008.

ga_sparse ga_iterat ive pso_sparse pso_iterat ive

algorithm

40

50

60

70

80

fi
tn

e
s
s

(m
a

x
 1

0
0

)

Sparse/Iterat ive GA/PSO

Fig. 4. The fitness comparison between the iterative and the sparse ap-
proached, both for the genetic algorithms and the PSO.

pso_sparse pso_iterat ive

algorithm

2250

2500

2750

3000

3250

3500

3750

4000

ti
m

e
 (

s
e

c
o

n
d

s
)

Tim e com parison between sparse PSO and iterat ive PSO

Fig. 5. The time comparison between sparse and iterative PSO.

c= 1.5; s= 3 c= 0.4; s= 0.8 c= 0.8; s= 0.4

PSO param eter subset variants

45

50

55

60

65

70

75

fi
tn

e
s
s
 (

m
a

x
 1

0
0

)

PSO with variable cognit ive and social weights

Fig. 6. The fitness comparison between sparse PSO with different cognitive
and social weights.

const_inert ia_weight decreasing_inert ia_weight

PSO inert ia weight type

40

50

60

70

80

fi
tn

e
s
s
 (

m
a

x
 1

0
0

)

Iterat ive PSO with different inert ia weight updates

Fig. 7. The fitness comparison between PSO with constant inertia weight and
with uniformly decreasing in time inertia weight.

level_1 level_2 level_3 level_4 level_5

Gam e difficulty

50

60

70

80

90

fi
tn

e
s
s
 (

m
a

x
 1

0
0

)

PSO at different gam e levels

Fig. 8. The fitness comparison of PSO against different game difficulty levels.

level_1 level_2 level_3 level_4 level_5

Gam e difficulty

2000

3000

4000

5000

6000

ti
m

e
 (

s
e

c
o

n
d

s
)

PSO at different gam e levels

Fig. 9. The time comparison of PSO at different game difficulty levels.

V. RESULTS

For evaluation of an agent, we ran 30 games against each
opponent, leading to 8 averages (1 per opponent), of which
we computed the harmonic mean, which is the final result of
the agent.

A. Best Combination of Opponents for Training

We searched for the best 4 opponents to serve as a basis
for generalization. The first subset considered was {1, 2, 6, 7},
which was chosen empirically after manually playing against
every opponent and choosing the ones which exhibited the
most general behaviors our agents could learn, in our opinion.
The gain on this subset is 125.37. Due to limited time, instead
of searching all other subsets, we sought to invalidate our
choice: by adding other opponents to the subset, we thought
they could have increased gains, and guide us to choose
another starting subset.

TABLE I
RESULTS FOR VARIOUS OPPONENTS WHEN STARTING WITH A

PRE-TRAINED PPO MODEL ON ENEMIES {1, 2, 6, 7}

Train opponents gain (harmonic mean)
{1, 2, 6, 7} ∪ {3, 4, 5, 8} 44.16
{1, 2, 6, 7} ∪ {3, 4, 6, 7} 75.3
{1, 2, 6, 7} ∪ {1, 3, 6, 7} 110.19
{1, 2, 6, 7} ∪ {2, 3, 6, 7} 136.1
{1, 2, 6, 7} ∪ {2, 4, 6, 7} 85.22

The only combination that lead to a better score than 125.37
was {2, 3, 6, 7}. We ran an experiment with PPO with random
initialization with the combination of train enemies {2, 3, 6, 7}
and we obtained a final gain of 99.97. This means that
we did not find a better combination of training opponents
than {1, 2, 6, 7}, so it is the one we used for the following
experiments.

B. Random Initialization PPO vs PSO Cascading PPO

The best PSO configuration was used in cascade before
the PPO in 4 runs. PPO with random initialization was ran
3 times. The small number of runs is due to the long training
time. The worst result of the PPO with random initialization
is far better than the best result of PSO cascaded with PPO
(Fig. 10). Our explanation for getting worse results when using
PSO+PPO is that the search space is vast, and we haven’t
allowed PSO enough exploration time. Another possible ex-
planation is that the landscape is misleading when it comes
to searching for generalized versus specialized solutions. This
can be more easily explained in game-playing terms: the game-
playing strategies which are learned quickly might not be
only suboptimal, but antithetic to the optimal game-playing
strategies.

We could try solving this problem by giving more ex-
ploratory power to the PSO, but we did not experiment with
this due to the lack of time, and good performance of the PPO.

random pso

init ializat ion

40

60

80

100

120

g
a

in
 (

m
a

x
 2

0
0

)

PPO random init ializat ion vs PSO cascade

Fig. 10. Gain comparison between PPO with random initialization and with
PSO cascading.

C. PPO in the best configuration

Considering the results above, we decided that PPO with
random initialization and training enemies {1, 2, 6, 7} would
be the best configuration. We ran 3000 epochs (chosen a
priori) in this configuration, saving all the models along the
way after every 250 epochs (since we anticipated overfit). After
looking at the testing results, we noticed that the final test gain
is greater after 2000 epochs than after 3000 epochs (Fig. 11).
This means that there is overfitting during the training. We
can conclude that by stopping the PPO algorithm after 2000
epochs instead of 3000 epochs, we can end up with more
generalized agents that perform better, on average, against all
opponents.

D. Best Train Agent vs Best Tested Agent

The best train gain was obtained in the first run of the PPO
with random initialization. The train gain was computed as the
harmonic mean of the averages per opponent of the 30 games
played against enemies {1, 2, 6, 7}. The highest train gain is
198.4. When computed against all opponents, this agent has
an overall gain of 117.22. Out of the three PPO with random
initialization runs, the highest final gain is 127.01 (but they
had lower training gains, due to overfit). After the experiments
were concluded we also looked at the overall gains of the
agents before 3000 epochs (Fig. 12). For runs 2 and 3, the
snapshots of the models were saved every 250 epochs. In
the first run, these periodic snapshots start after 2000 epochs.
When looking at the results of the intermediary agents, we

2000 3000

epochs

114

116

118

120

122

124

126

g
a

in
 (

m
a

x
 2

0
0

)

PPO com parison 2000 epochs vs 3000 epochs

Fig. 11. Gain comparison between PPO after 2000 epochs and after 3000
epochs.

500 1000 1500 2000 2500 3000
epoch

110

120

130

ga
in
 (m

ax
 2
00

)

Gain Evolution for PPO in 3 runs

Fig. 12. Gain Evolution for 3 PPO runs, each point is the harmonic average
of 30 evaluations

observe that there are some high peaks in test gain. The highest
test gain was observed during the third run after 1750 epochs
and it has a value of 137.18.

E. Comparison with the Upper Bound

With the PPO trained on the opponents {1, 2, 6, 7}, we
have surpassed the best specialized models from the original
paper, which were given as upper bounds [2]. While the
NEAT approach giving the upper bound is specialized on each
opponent (thus, 8 specialized solutions for 8 opponents), a
single PPO solution trained on 4 opponents manages to enlarge
this bound, on the 4 opponents it trained on.

Looking at the average survival rates of our agents, we
can also see near-perfect survival rates against the training
opponents, but also some generalization. Opponents 3 and 4,
however, were very difficult, while opponents 5 and 8 appear
to have behaviors similar to those we trained on.

TABLE II
SPECIALIZED NEAT VS GENERALIZED PPO (GAIN)

Opponent PPO Specialized
Run 1 Run 2 Run 3 NEAT
3000 ep 3000 ep 3000 ep 1750 ep
best train best test

1 198.41 199.07 199.81 199.61 190.01
2 199.74 199.27 190.34 189.14 194.01
3 58.94 46.67 70.27 85.01 180.01
4 58.34 66.5 64.11 80.17 194.01
5 172.61 165.65 174.61 158.83 194.01
6 195.73 196.95 195.85 194.37 173.01
7 199.79 195.05 193.27 191.17 177.01
8 122.17 145.49 141.89 140.61 186.01

{1, 2, 6, 7} 198.4 197.57 194.75 193.49 183.09
{1, . . . , 8} 117.22 114.91 127.01 137.18 185.67

TABLE III
SPECIALIZED NEAT VS GENERALIZED PPO (PERCENTAGE OF GAMES

WON)

Opponent PPO
Run 1 Run 2 Run 3
3000 ep 3000 ep 3000 ep 1750 ep
best train best test

1 100 100 100 100
2 100 100 100 100
3 3.33 0 3.33 46.66
4 0 6.66 0 6.66
5 100 96.66 100 100
6 100 100 100 100
7 100 93.33 100 100
8 80 100 96.66 90

TABLE IV
AVERAGE PLAYER AND ENEMY LIFE. AVERAGE GAME DURATION (IN

FRAMES)

Opp Best train agent Best test agent
pl. life opp. life frames pl. life opp. life frames

1 97.26 0 159.63 100 0 174.23
2 98.33 0 176.6 89.73 0 186.43
3 0.13 43.33 457.26 7.66 21.33 410.53
4 0 37.66 547.5 1.84 21.66 736.83
5 71.32 0 379.13 60.52 0 367.93
6 96.32 0 165.06 95 0 203.53
7 99.74 0 162.06 85.9 0 135.13
8 34.3 6 520.93 38.76 2 443.6

Avg 62.17 10.87 321.02 59.92 5.62 332.27

F. Time Analysis

The tests were run on an i7 4750HQ processor, on 3 threads.
The median game time during training is 28 seconds. The
average number of frames per game during training is 287.

VI. CONCLUSIONS

A. Need for exploration

We performed many exploratory experiments, hoping to
quickly find a good starting point for the slower and more
exploitative PPO - to find a candidate solution in the vicinity
of a very good optimum, to which PPO would more easily
converge.

Instead, the uniform random initialization for ANN weights
outperformed our cascade method. As stated before, this points
to the difficulty of the problem. Intuitively, the game-playing
behaviors learned when starting to play the game need not
form the basis for more advanced, but essentially similar,
optimal strategies. From this simple intuition, along with our
experimental results, we can describe the function landscape
as misleading.

Nevertheless, we can imagine an algorithm that performs
both strong exploration and exploitation: based on our current
results, such an algorithm would be similar to a Memetic
Algorithm [11], where, starting from a GA or PSO, every
generation, the candidate solutions in the population would
experience “Hill-Climbing”, or rather, strong exploitation in
the form of a PPO. The reason we didn’t attempt such an
approach, and instead tried a two-part cascade ensemble,
was the larger computational cost of the described Memetic
Algorithm.

Other than strong exploration, we see no way of improving
our current results, since we already have strong overfit.

B. Need for exploitation

Against the 4 training opponents, PPO performs very well,
with a harmonic mean of 198.4, out of a maximum possible
of 200.01. When tested against the full 8 opponents, PPO
manages a harmonic mean of 117.22, with low performance
against 2 opponents. This shows the difference between op-
timal strategies for tackling those opponents, our algorithm’s
limited generalization capabilities, and existence of training
overfit – since, if sampling every 250 training epochs, we can
find an ANN configuration that tests better, with a gain of
137.18.

It is difficult to compare our algorithm – and indeed,
experimental setup – with human behavior. While a person
might experience difficulty defeating an opponent on the first
encounter, they are capable to learn, adjust and improve.
Allowing PPO such an adjustment might have it improve as
well. However, to prevent information leaks from testing, we
fully separated training and test opponents. The repeated 30
runs for each ANN configuration was done to provide a better
statistical approximation, and no information was learned on
successive runs.

Indeed, we are confident that PPO could establish new upper
bounds, if allowed to train a single model on all 8 opponents,
as it did with the starting 4. The fact that a single PPO-trained
solution outperforms 4 opponent-specialized NEAT solutions
(Table II) shows the difficulty of the problem, the requirement
for strong exploitation, and the possibility of developing a
single general model for playing against the 8 opponents.

Thus, based on the above requirements – for the algorithm to
perform, at once (and not in sequence), both strong exploration
and exploitation, to achieve generalized results above the upper
bound established by NEAT for all opponents, we can see
two solutions, under NFL [12]: either a specialized algorithm,
fine-tuned for this particular problem instance, or a more gen-
eral algorithm (like the above-mentioned Memetic Algorithm)
which requires significant computational resources.

VII. ACKNOWLEDGMENTS

We’d like to thank the creators and developers of Evoman
for their implementation and documentation efforts. We’d also
like to thank Ioana-Teodora Norocea for her editing help.

REFERENCES

[1] Evoman: Game-playing Competition for WCCI 2020, http://pesquisa.
ufabc.edu.br/hal/Evoman.html

[2] Fabricio Olivetti de Franca, Denis Fantinato, Karine Miras, A.E.
Eiben and Patricia A. Vargas. ”EvoMan: Game-playing Competition”
arXiv:1912.10445

[3] de Araújo, Karine da Silva Miras, and Fabrı́cio Olivetti de França. ”An
electronic-game framework for evaluating coevolutionary algorithms.”
arXiv:1604.00644 (2016).

[4] Floreano, D., Dürr, P. & Mattiussi, C. Neuroevolution: from architec-
tures to learning. Evol. Intel. 1, 47–62 (2008). https://doi.org/10.1007/
s12065-007-0002-4

[5] M. MEGA, ”Produced by capcom, distributed by capcom, 1987,”
System: NES.

[6] Watkins, C.J.C.H., Dayan, P. Q-learning. Machine Learning 8, 279–292
(1992)

[7] Holland J.H., Genetic Algorithms and Adaptation. Adaptive Control of
Ill-Defined Systems, 1984, Volume 16 ISBN 978-1-4684-8943-9

[8] Kennedy, J.; Eberhart, R. (1995). ”Particle Swarm Optimization”. Pro-
ceedings of IEEE International Conference on Neural Networks. IV. pp.
1942–1948.

[9] Kenneth O. Stanly; Rist Miikkulainen (2002). ”Evolving Neural Net-
works through Augmenting Topologies”. Evolutionary Computation,
Volume 10, Issue 2, Summer 2002, p.99-127, https://doi.org/10.1162/
106365602320169811

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alex Radford,
Oleg Klimov (2017) ”Proximal Policy Optimization Algorithms”,
arXiv:1707.06347v2

[11] Moscato, P. (1989). ”On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms”. Caltech
Concurrent Computation Program (report 826).

[12] Wolpert, D.H., Macready, W.G. (1997), ”No Free Lunch Theorems for
Optimization”, IEEE Transactions on Evolutionary Computation 1, 67.

[13] Karine Miras, Evoman, https://karinemirasblog.wordpress.com/
portfolio/evoman/

[14] Joshua Achiam, 2018, “Spinning Up in Deep Reinforcement Learning”
https://github.com/openai/spinningup

