
Evolving Artificial Neural Networks Using Genetic
Algorithms for Playing Mega Man II

Fernando Ishikawa, Leandro Trovões, Leonardo Carmo
Center for Mathematics, Computing and Cognition (CMCC)

Federal University of ABC (UFABC)
Santo André, Brasil

{fernando.ishikawa,leandro.trovoes,leonardo.carmo}@aluno.ufabc.edu.br

Abstract—Building Game Playing Agents provide a controlled
environment with varying difficulty in order to test Artificial
Intelligence algorithms. A recently proposed framework for
testing such algorithms is called EvoMan and was created based
on a classic and challenging game called MegaMan II. In this
framework, the agent must defeat a number of different enemies
equipped with a diverse set of weapons possessing different
behaviors from each other. In this paper, we propose the use
of a neuroevolution strategy with additional manually crafted
inputs to find a generic game playing agent for this framework.
The challenge, as proposed in the recent EvoMan competition, is
to train the agent only with a subset of the enemies and verify if
they are capable of beating the entire set. With our approach, we
have found an agent capable of defeating the entire set of enemies
while being competitive with some reported upper bound.

Index Terms—Neuroevolution, Genetic Algorithm, Artificial
Neural Network

I. INTRODUCTION

The use of Computational Intelligence techniques in games
has received great attention of the research community and
is experiencing a rapid development [1]. As an established
research field, this topic focus on creating game playing
agents, adapting the difficulty of the game to the human player,
creating randomized environments, etc. [2]–[4]. Since games
are able to pose different levels of challenges and require the
adequate use of a wide sort of skills, they emerge as a relevant
problem for Artificial Intelligence (AI) algorithms. Different
contexts of a game demands a set of skills to be learned in
different proficiency levels [1].

Within this research field, a prominent learning technique
widely used is the neuroevolution (NE) [5], [6], which can
either make use of optimization meta-heuristics to adapt the
weights of an Artificial Neural Network (ANN) [7] with fixed
topology, or adapt the weights and the topology itself. The
optimization meta-heuristics are usually from the family of
evolutionary algorithms [8]. Not only in games, this tech-
nique has found application in a diverse set of tasks, such
as robotics [9], biophysics [10] and others [11]. The main
advantage of this technique in comparison with classical ANNs
– trained by the backpropagation algorithm [7] – is that it
is more robust against local minima convergence and can be
more efficient in finding the suitable topology [5].

In special, neuroevolution techniques were able to achieve
remarkable performance in a large variety of games, which

includes Pac-Man [12], Quake II [13], Unreal Tournament [14]
racing and fighting games [15], [16]. However, since each
game has its own particular actions/actuators, there is not
an unique solution. Each game poses a different challenge
for the learning algorithms [17]. In that sense, in this work,
we aim at applying neuroevolution techniques in a very
challenging game: Mega Man II, a platform game [18]. More
specifically, our method will be analyzed within the Evoman
framework [19], a public domain version clone of the original
platform game.

The rest of this paper is organized as follows. In Section II
the Evoman competition challenge is described. Section III
presents the background on neuroevolution, detailing the
artificial neural networks and the genetic algorithms. The
attributes selection and the classification methods are presented
in Sections IV and V. The performance of our proposal is
shown in Section VI and, finally, the conclusions are presented
in Section VII.

II. EVOMAN COMPETITION

Evoman1 is an open source video game playing framework
inspired by the game Mega Man II2 for developing artificial
intelligence algorithms [18]. In Evoman, a playable character
has the objective of defeating a total of 8 different Master
Robots, each one having different patterns and behavior and
supported by different scenarios. The player has at their
disposal the ability to move forward and backward, jumping
and shooting from an arm cannon. These moves can be done
simultaneously, so one can jump forward while shooting.

The framework uses the Python library Pygame3, a cross-
platform set of Python modules, with the purpose of support-
ing the creation of games. It consists of computer graphics
and sound libraries designed to be used with the Python
programming language.

The objective of this work is to create a general agent
capable of defeating all eight opponents while learning only
from a subset of four of those enemies.

Since each enemy behavior is notably different from each
other, the player should learn general strategies and reactions
from common patterns of the enemies behavior such as

1https://github.com/karinemiras/evoman
2https://www.megaman.capcom.com
3http://www.pygame.org/



avoiding being shot and shoot in the direction of the enemy.
This has already been proven to be a challenge to different
algorithms [18].

Based on the knowledge acquired at the training stage,
the performance of the intelligent agent is evaluated as an
harmonic mean of the following function applied to each boss
fight:

J = 100.01 + ep− ee, (1)

where ee and ep are the final amount of energy of the enemy
and the player, respectively. The value of 100.01 is added so
that the harmonic mean always yields valid results. The goal
is the maximization of the harmonic mean, i.e., the defeat of
every boss without getting hit. Both the agent and the enemies
start the game with 100 energy points. Every time one player
gets hit, it loses some points. Whoever reaches 0 points loses
the match.

There are several ways to categorize the environment where
the agent should learn, providing relevant features that can
assist the analysis of alternative ways for solving the problem.
For this particular case, Evoman can be described as:

• Partially observable, due the knowledge of relative
positions of the enemy and projectiles, but no information
about the field or your own shoots.

• Multi-agent competitive, the enemy tries to maximize
the damage given by pursuing and shooting at the player
while the agent needs to keep alive to defeat the opponent.

• Nondeterministic, there is a level of randomness on the
bosses actions, so a deterministic sequence of actions
cannot return the optimal strategy for different games.

• Sequential, the agent’s actions affect the future move-
ments of the enemy which modifies the fight procedure.

• Static, the game procedure is dependent on the agent’s
actions, the game only continues once its response is
returned.

• Discrete, there is a finite number of possible states,
although this number is considerably large.

To solve the problem, there are several approaches that are
either difficult or impossible considering some features, mainly
because it is nondeterministic and partially observable. For
instance, one of the most efficient algorithm to solve game
related problems are reinforcement learning [20], however
the inability to identify successful shots would affect its
implementation, since there is no immediate feedback.

III. BACKGROUND

The solution developed for training the agent was composed
of a neuroevolution algorithm [5], which, by using a search
metaheuristics such as the Genetic Algorithm [8], is responsi-
ble for searching for the best weights of an Artificial Neural
Network (ANN) [7] in order to achieve an optimal solution
for the majority of bosses, according to Eq. (1). The two main
elements of the adopted neuroevolution approach are described
bellow.

A. Artificial Neural Networks

An artificial neural network is an information processing
system inspired by the human brain cells: it is composed of
several units called neurons and, by connecting them in net,
they are capable of doing complex analysis on stimulus. The
basic element, an artificial neuron, is also called perceptron
and has three basic elements: a set of synapses weights, a
linear combiner and a nonlinear activation function [21]. The
synapses weights are related with the relevance of the input
for the neuron, which could be positive, negative or null. The
neuron can also include a bias term, a value that adds a new
fixed input signal, with the effect of applying an affine trans-
formation which translates the output of the linear combiner
[21]. Next, the linear combiner performs the summation of all
signals received and weighted by the synapses. At last, the
activation function is responsible for limiting the amplitude
of the neuron output to some finite value and also to apply
a nonlinear transformation – usual activation functions are
the hyperbolic tangent and the ReLU [7]. Mathematically, the
perceptron output can be defined as:

y(n) = f
(
wTx(n)

)
, (2)

where x(n) ∈ RM×1 is the n-th input vector with M
attributes, w(n) ∈ RM×1 are the vector with the synaptic
weights and f(·) is the nonlinear activation function.

Generally speaking, we can classify ANNs in three cate-
gories regarding their architectures (which depends on how the
artificial neurons are connected): Single-Layer Feedforward
Networks, Multilayer Feedforward Networks and Recurrent
Networks [21]. In this work, we will focus on the Multilayer
Feedforward Networks or Multilayer Perceptrons (MLPs),
which are characterized by the presence of one or more
intermediary layers, also known as hidden layers, between
the input and the output ones. In this case, the neurons are
structured along the exclusive connection of the outputs of one
layer to the inputs of the next, defining the single direction
of data flow, characterizing the feedforward approach. The
hidden layers make it possible to handle nonlinear problems
by extracting more complex patterns of the input. Finally, the
last layer (output) is responsible for combining the information
processed by the previous layers and to yield an output that
can be used for decision taking [21].

B. Genetic Algorithms

Genetic algorithm (GA) is a metaheuristic that can perform
the search for a solution based on the natural evolution pro-
posed by John Holland in 1975 [22]. The GA algorithm starts
with a group of randomly initialized states, called a population.
Each state, named as individual, is rated by the fitness function,
a function that calculates a value that represents how close it
is to a satisfying solution [20].

At every iteration of the search, the current group of
individuals is called generation. New individuals, in a process
called crossover, are created by combining two existing ones
– called parents – from the previous generation: parts of
the parents are randomly chosen from a crossover point to



Fig. 1. Graphic representation of a MLP [21].

form the offspring. During this combination, the newborns can
also suffer random mutations, i.e., small variations to avoid
convergence of the search [20].

There are many variants of the way each of these processes
can occurs. To select the best chromosomes, one could use
roulette wheel selection, Boltzmann selection, tournament se-
lection, rank selection, steady-state selection, elitism selection,
among others [23]. For the crossover, there are three main
types of crossover operators, namely as single-point, two-point
and uniform crossover [23]. One should select the appropriate
ones based on the specific problem to solve. Alg. 1 describes
the main steps of the GA algorithm, being P the population
and F the fitness value associated with each individual.

Algorithm 1: Genetic Algorithm

P = initialPopulation();
while not shouldTerminate() do

F = calculateFitness(P);
P = selection(P, F);
P = crossover(P);
P = mutation(P);

end

C. Neuroevolution

To solve the problem of finding the parameters of artificial
neural networks, the usual solution consists on the backprop-
agation algorithm, which uses the current error calculated on
an iteration to adjust the preceding layers weights. However,
this process could lead to a local optimal solution [24] that
might not be satisfactory for the problem.

Less susceptible to this problem, metaheuristics can be
used instead [5]. Although not able to guarantee optimal

convergence, they generally find very promising solutions.
Some of the other advantages are that they provide a more
flexible way of training the ANN when there is no clear
definition of error function; they could be used to determine
a good starting point for back-propagation [5] and they allow
other hyperparameters, such as number of layers or layer size,
to be optimized [25].

Hence, in this work, we apply the GA algorithm for adapting
the weights of the ANN.

IV. INTRODUCING NEW FEATURES

The Evoman game provides, in real time, 20 sensors for the
agent:

• Distance to enemy: the horizontal and vertical distances,
in pixels, between the player and the enemy (total of 2
attributes).

• Distance to projectiles: the horizontal and vertical dis-
tances, in pixels, between the player and each of the eight
projectiles (total of 16 attributes).

• Directions: the direction both player and enemy are
facing (total of 2 attributes).

These attributes could be used as the input for the ANN.
However, depending on the ANN dimension (number of
neurons and layers), 20 attributes may be an excessive amount.
Besides that, some of these attributes may not be relevant,
contributing for a performance loss. In that sense, we used
this information to create other attributes for the ANN:

• From the horizontal distance between the characters and
the direction the player is facing, we calculate whether or
not the player is facing the enemy; This would be a better
indication to the player that his shots can be effective.

• The horizontal and vertical distances between the projec-
tiles to the player of the closest ones; we mapped the
euclidean distance for each one of them and removed the
farthest three of the projectiles, even when there were less
than 4 of them;

• Finally, we preserved the sensors of the horizontal and
vertical distances between the player and the boss and
the direction the enemy is facing.

By limiting the number of projectiles the agent has to deal
with, we also limit the number of parameters the genetic
algorithm has to find, simplifying the search and prioritizing
the most relevant information to take a decision. A projectile
that is far away is unlikely to influence the outcome of the
match, also, as not every boss uses them all, this difference
could bring unexpected behaviours to the ANN when values
that did not have a meaning in the training phase are used
during the test.

For every distance x, we also applied the following trans-
formation:

dist(x) =


0 if x = 0
g(x) if x >0
−g(x) if x <0

(3)

being
g(x) = 2−(x/150)2 . (4)



Hence, Eq. (3) is used to normalize the values between −1
and 1 and assign greater weights to the changes in projectiles
closer to the player. Fig. 2 depicts the behavior of function
dist(x), by varying x from −600 to 600.

Fig. 2. Graphic representation of the function dist(x).

V. CLASSIFIER

We used an ANN to decide the actions the agent should
perform on each iteration of the game. It consisted of 14
input neurons, two intermediate layers, containing 32 and
12 neurons respectively, and five non-exclusive outputs. Each
output corresponds to the actions the player can perform: right,
left, shoot, jump and release jump. All layers used a sigmoid
activation function, with the output having a threshold of 0.5.

The weights of this ANN were optimized by a search
performed by the GA adapted to our problem, in which the
individuals were composed of a set of weights between each
pair of neurons of the network. Starting with 10 individuals,
each one was initialized with values from a uniform distribu-
tion inside the −1 and +1 interval.

One by one, all individuals were then put to fight against
each of the four training bosses. At the end of the four fights,
they were evaluated using the match duration time and the
remaining life of the fighters.

The fitness function used to evaluate the individual against
one boss was

fightResult =0.7 ∗ (100− enemyLife)
+ 0.3 ∗ playerLife− ln(time)

(5)

and then the individual fitness was calculated using

fitness = mean(fightResult)/2+min(fightResult) (6)

For each generation, at the crossover step, we used a
convex combination between two parents, as used in Evolutive
Strategies algorithms [8] – aimed to deal with real valued
problems.

We selected each pair of the parents individuals by sampling
without replacement the entire population, then their values
were multiplied by complementary values chosen randomly
inside the 0 to 1 interval and added together.

After that, the individuals from both the previous generation
and the resulting ones from the recombination were submitted

TABLE I
HYPERPARAMETERS

Parameter Value
Hidden layers 2

Neurons (32, 12)
Population Size 10

Generations 150
Mutation Gaussian
Crossover Convex combination
Selection Elitism

Resampling rate 20 gens
Training bosses 1, 4, 6, 7

to a mutation process, in which one generates five new
individuals. The newborns were then evaluated the same way
as before; if one had performed better than their predecessor,
it would substitute the original individual.

The mutation was performed by adding values from a
gaussian distribution with zero mean and standard deviation
σ on each weight of the ANN. In the case the individual was
created at the current generation, the value of σ were fixed at
0.5. However, if the individual comes from the previous gen-
erations, the value would be selected as (150−current)/150,
where 150 is the number of generations run by the algorithm
and current the number of generations so far. This was
done to benefit the exploration of the search space on the
beginning iterations and gradually increasing exploitation to
try to achieve an optimal solution.

Finally, the best individuals are selected to survive the next
generation and the remainder are discarded in order to keep
the size of the population constant.

At every 20 iterations, the worst performing half of the
population is discarded and new individuals are sampled in
order to increase exploration of new regions of the search
space and stall convergence. This sampling is performed the
same way as in the population initialization.

The algorithm performs 150 iterations and store the best
individual of each population. At the end, to prevent the agent
specialization on the train set, these individuals are tested
against all enemies and the one with the highest weighted score
among all bosses is chosen as the final weights of the ANN.
To achieve this, a more common approach like early stopping
could not be used. The small amount of enemies available
preclude the selection of a part exclusive for this verification.
Also, the high volatility of results between individuals against
the testing set, at each round, could be misinterpreted as a sign
of overfitting.

VI. RESULTS

For the sake of clarity, the hyperparameters and configura-
tions used in our approach are depicted in Table I. As we can
see from this table, the enemies selected for the training stage
were 1, 4, 6 and 7. A summary of the results is reported in
Table II.

From this table we can see that the best agent succeeded in
defeating every enemy of the enemies set (see enemy energy
column). As expected, the worst performance was obtained



TABLE II
RESULTS OF BEST AGENT

Boss energy player energy enemy time
1 64.00 0.00 184
2 68.00 0.00 288
3 8.00 0.00 394
4 34.60 0.00 860
5 87.40 0.00 254
6 17.80 0.00 600
7 81.40 0.00 150
8 58.60 0.00 422

Harmonic Mean 28.44 0.00 290.960

TABLE III
COMPARISON BETWEEN THE UPPER BOUNDS AND OUR BEST AGENT.

Algorithm Gain
Our approach 147.12

NEAT 185.67
GAP 139.64
GA10 143.74
GA50 149.43
LOP 0.04
LO10 104.01
LO50 79.32

against a boss not pertaining to the training set. Particularly,
one of the possible shots of this enemy is a circle of leaves
that comes from the top, instead of the usual horizontal bullets.
For this reason, our agent might have found more difficulty
on beating this particular boss.

Curiously, the best performance was obtained against an-
other boss outside the training set. Unlike most of the bosses,
this boss usually stays at one side of the screen, allowing the
player to just jump and shoot while staying at the other side.

The longest fight was obtained against the fourth boss. One
of the attacks of this boss is a fire dash in which it makes the
enemy intangible during the attack. For this reason, the player
has less opportunities to shoot at the enemy.

Since the energy of each enemy is zero for every stage,
the gain is simplified to J = 100.01 + ep. The harmonic
mean of the gain is then 147.12. In Table III we replicate
the upper bounds reported in [19] that serves as a baseline for
this competition.

A video depicting the fights of our agent against each boss
can be found at youtube (https://youtu.be/Us05GIsRNlk).

Notice that the results from this table were obtained by
training different agents specialized for a single specific boss,
an easier challenge than the one presented in this paper. As
we can see, our agent succeeded on finding a general strategy
capable of being on par with the best results obtained by the
set of specialist agents.

VII. CONCLUSION

In this paper, we created an intelligent agent for the game
playing framework Evoman with the objective to learn actions
that are general enough to fight against several enemies with
different behaviours, while training with only four of the eight
enemies.

For doing so, we selected a subset of the 20 sensors provided
by the game, as part of them were not much useful for decision
taking, and introduced a new feature to help on shooting.
These information were presented to an ANN at each tick
of the game to select the subsequent action. This ANN were
trained using a GA as an alternative to handle the absence of
a clear outcome for each action.

The results were successful as the agent managed to defeat
all the 8 bosses in the game. Despite the small quantity of
enemies, this is a good indication of how generalist the agent
is.

However, as there are a small numbers of enemies, one
possible future test to a better outcome could include more
enemies to be more confident that the agent generalizes well.

Other than that, more sensors could be provided to possibly
give a better certainty on the agent decision making.

REFERENCES

[1] S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 9, no. 1, pp. 25–41, 2015.

[2] K. Chellapilla and D. B. Fogel, “Evolution, neural networks, games, and
intelligence,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1471–1496,
1999.

[3] R. Miikkulainen, “Creating intelligent agents in games,” in Frontiers
of Engineering: Reports on Leading-Edge Engineering from the 2006
Symposium. National Academies Press, 2007, pp. 15–15.

[4] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O. Stanley,
and C. H. Yong, “Computational intelligence in games,” Computational
Intelligence: Principles and Practice, pp. 155–191, 2006.

[5] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary intelligence, vol. 1, no. 1, pp. 47–62,
2008.

[6] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[7] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[8] I. Boussaı̈D, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Information sciences, vol. 237, pp. 82–117, 2013.

[9] S. Nolfi, D. Floreano, and D. D. Floreano, Evolutionary robotics: The
biology, intelligence, and technology of self-organizing machines. MIT
press, 2000.

[10] J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of
modularity,” Proceedings of the Royal Society b: Biological sciences,
vol. 280, no. 1755, p. 20122863, 2013.

[11] A. K. Hoover, P. A. Szerlip, M. E. Norton, T. A. Brindle, Z. Merritt, and
K. O. Stanley, “Generating a complete multipart musical composition
from a single monophonic melody with functional scaffolding.” in ICCC.
Citeseer, 2012, pp. 111–118.

[12] S. M. Lucas, “Evolving a neural network location evaluator to play ms.
pac-man.” in CIG. Citeseer, 2005.

[13] M. Parker and B. D. Bryant, “Visual control in quake ii with a cyclic
controller,” in 2008 IEEE Symposium On Computational Intelligence
and Games. IEEE, 2008, pp. 151–158.

[14] R. Kadlec, “Evolution of intelligent agent behaviour in computer games,”
Master’s thesis, Charles University in Prague, p. 75, 2008.

[15] A. Agapitos, J. Togelius, and S. M. Lucas, “Evolving controllers for
simulated car racing using object oriented genetic programming,” in
Proceedings of the 9th annual conference on Genetic and evolutionary
computation, 2007, pp. 1543–1550.

[16] T. Graepel, R. Herbrich, and J. Gold, “Learning to fight,” in Proceedings
of the International Conference on Computer Games: Artificial Intelli-
gence, Design and Education. Citeseer, 2004, pp. 193–200.

[17] J. Togelius, S. Karakovskiy, J. Koutnı́k, and J. Schmidhuber, “Super
mario evolution,” in 2009 ieee symposium on computational intelligence
and games. IEEE, 2009, pp. 156–161.

[18] K. d. S. M. de Araújo and F. O. de França, “An electronic-game
framework for evaluating coevolutionary algorithms,” arXiv preprint
arXiv:1604.00644, 2016.

https://youtu.be/Us05GIsRNlk


[19] F. O. de Franca, D. Fantinato, K. Miras, A. Eiben, and P. Vargas, “Evo-
man: Game-playing competition,” arXiv preprint arXiv:1912.10445,
2019.

[20] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”
2002.

[21] S. S. Haykin et al., “Neural networks and learning machines/simon
haykin.” 2009.

[22] J. H. Holland et al., Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[23] L. Haldurai, T. Madhubala, and R. Rajalakshmi, “A study on genetic
algorithm and its applications,” International Journal of Computer
Sciences and Engineering, vol. 4, no. 10, p. 139, 2016.

[24] M. Gori and A. Tesi, “On the problem of local minima in backpropaga-
tion,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
no. 1, pp. 76–86, 1992.

[25] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments, 2015, pp. 1–5.


	Introduction
	Evoman Competition
	Background
	Artificial Neural Networks
	Genetic Algorithms
	Neuroevolution

	Introducing new features
	Classifier
	Results
	Conclusion
	References

