
Multi Populational NeuroEvolution of Augmenting
Topologies for the EvoMan Framework

Augusto Dantas ∗, Aurora Pozo †

Department of Computer Science
Federal University of Paraná

Curitiba, Brasil
Email: ∗aldantas@inf.ufpr.br, †aurora@inf.ufpr.br

Abstract—Artificial Intelligence and Games is a growing re-
search area that had some remarkable breakthroughs in the
past few years. Electronic video games, in particular, offer a great
testbed for AI researchers and practitioners due to their challeng-
ing nature. Recently, some works have highlighted the possibility
to use evolutionary algorithms for learning game playing agents,
instead of the more widely used reinforcement learning methods.
This work investigates a cooperative coevolutionary strategy for
learning a generalized agent to play a platform level game called
EvoMan. In this game, a player is faced against one enemy at each
level, totalling at eight levels and enemies. The goal is to learn
a strategy able to beat all enemies, but using only four of them
during the evolutionary process. We used the NeuroEvolution of
Augmenting Topologies algorithm to evolve player agents against
a set of enemies in a novel multi-populational scheme. Our agent
was able to beat 6 enemies out of 8, including the four enemies
used for training and two other unseen enemies.

Index Terms—artificial intelligence and games, neuroevolution,
cooperative coevolution

I. INTRODUCTION

This is a submission to the EvoMan Competition 1. The
goal is to achieve a generalized playing agent to the EvoMan
framework [1], a platform level game based on the famous
MegaMan game. In EvoMan, there are eight possible enemies,
each one with complete different behaviours, that the player
must defeat. Therefore, a single agent should ideally generalize
and be able to beat all the eights enemies, which is not a trivial
task [2]. The rewards in EvoMan are episodic, which means
that the feedback is only given at the end of a complete run
of a level. Therefore, it is mainly intended as a testbed for
evolutionary strategies.

The generalization to different enemies can be seen as a
multi-objeticve task. One way of dealing with multi-objective
problems is to decompose it into different mono objective
problems and solve them under a coevolutionary strategy, with
multiple populations sharing their information [3].

This work investigates the use of the NeuroEvolution of
Augmenting Topology (NEAT) algorithm [4] in a multi-
populational scheme (MultiNEAT) for learning a general agent
for the EvoMan game. The wide success of NEAT in the
literature is due to some simple, yet important, designs as-
pects that it introduces. First, the algorithm starts with a

1http://pesquisa.ufabc.edu.br/hal/Evoman.html

population of minimal networks that increase in complexity
over time trough mutation. Also, it protects innovative nodes
and connections by speciation and fitness sharing. Finally,
it handles the problem of matching different topologies by
marking the genes with unique keys that are used to easily
match genomes during reproduction. NEAT, and its variations,
has been already successfully applied to games such as Ms.
Pacman [5] and some classic Atari games [6].

In MultiNEAT, each subpopulation have a NEAT instance
that evolves individuals for performing one task (enemy).
Then, the best genomes of each population are passed to a
master population that evaluates the individuals for all the
training tasks (enemies). The idea is to allow the networks
to evolve in a simpler environment and make them compete
in a harsher condition afterwards. The best genomes from the
master population are then introduced back into the single
enemy populations for the next iteration. These genomes can
be used during reproduction in the subpopulations.

The paper is organized in the following way: Sections II
and III respectively detail the original NEAT algorithm and
our MultiNEAT approach. The experimental setup is described
in Section IV, followed by the results in Section V. At last,
conclusions and future works are drawn in Section VI.

II. NEAT

A key aspect of the NeuroEvolution of Augmenting Topolo-
gies algorithm is that the initial population is composed of
minimal structured networks. Then, these networks becomes
more complex over the generations through mutation and
crossover. The advantage is that the solutions can become
more tailored to the problem while reducing the search
space [4]. There are several implementations of NEAT avail-
able. In this work, we used a python implementation called
NEAT-Python 2.

In NEAT, the genomes (individuals) are encoded by a set of
node genes and a set of connection genes. Each gene have a
key identifier that allows the algorithm to easily crossover or
compute the distance between two genomes. In this implemen-
tation, the node genes have four attributes: the values for bias

2https://neat-python.readthedocs.io



and response, and the activation and aggregation functions.
These attributes determine the output of a node according to:

output = activation(bias + (response ∗ aggregation(inputs))) (1)

Meanwhile, a connection gene contains the weight value
and a flag indicating if it is enabled or disabled. The key of
the connection gene is a tuple with the keys of both nodes it
is connecting.

At each generation, new genomes are created through
reproduction and mutation. The s% best genomes of each
species (with s being a configurable parameter) are considered
for reproduction pool. For each new genome, two parents are
chosen at random from this survivors pool for mating. Then,
the genes from both parents that have identical keys are passed
to the child (the gene values are inherited from either parent
at random). The remaining genes are called the disjoint genes,
and only the fittest parent is allowed to pass them to the
offspring.

Next, the new genome goes through mutation, which can
be random perturbations on gene values (weight in connection
genes, bias and response in node genes), or structural mutation,
that adds new nodes and/or connections. An add connection
mutation simply connects two nodes with a random weight.
An add node mutation inserts a new node in the place of an
existing connection, then create two new connections to link
the previous and next nodes that were connected before. After
this, all offspring replace the genomes from the population
for the next generation (except the best genomes if elitism is
enabled).

A common problem when evolving topologies is that the
addition of new structures (a node or connection) usually
leads to an immediate decrease in performance of the network
[4]. Hence, in order to protect innovative mutations, NEAT
uses a speciation scheme, in which the genomes are divided
into species based on topological similarity. This is done
by calculating a distance measure between a genome and a
randomly chosen member of each species. If this distance is
less than a pre-defined threshold, the genome is placed into the
respective species. If no compatible species is found, then a
new species is created for placing that individual. The distance
between two genomes is given by the amount of disjoint
genes (genes with unmatched keys), multiplied by a coefficient
parameter, plus the sum of the absolute differences between
the values of the paired genes, also multiplied by its coefficient
parameter.

III. MULTINEAT
MultiNEAT uses several NEAT instances in order to achieve

a generalized solution. Therefore, instead of only evolving so-
lution on a multi-objective task, it also creates subpopulations
to handle the tasks individually. The principle of this is to
alternate the evolution between simpler and more complex
environments, so the individuals can improve for specific
objectives individually before competing in the whole set of
objectives.

Algorithm 1 shows the workflow of our MultiNEAT ap-
proach. For a problem with n objective task, n + 1 NEAT
populations are created: one master population that is evolved
against all objectives and n subpopulations with one objective
assigned to each of them (lines 1-5). Then, for max iter itera-
tions, each subpopulation is evolved for max gen generations
, and the n best solutions at the last generation are selected
to compose the migrants set (lines 11-12). This migrants set is
used to replace the worst solutions in the current master popu-
lation (line 14). Additionally, the replaceWorsts function
also evaluates the migrants in the new environment (in this
case, a multitask one) and calls the NEAT speciation function
to update the species scheme. Finally, the master population
is then evolved by NEAT for max gen master generations,
and the n best master from the last generation are chosen
as the elite set (lines 15-16).

Algorithm 1: MultiNEAT
Input: A set T = {t1, t2, . . . , tn} of n objective tasks
Output: The winner solution of each population

1 master population← initializePopulation(T)
2 populations← []
3 foreach task ti ∈ T do
4 populations[i]← initializePopulation(ti)
5 end
6 master elite← []
7 for i← 1 to max iter do
8 migrants← []
9 foreach population pi ∈ populations do

10 setArchive(pi, master elite)
11 NEAT(pi, max gen)
12 migrants← migrants ∪ selectBests(pi, n best)
13 end
14 replaceWorsts(master population, migrants)
15 NEAT(master population, max gen master)
16 master elite← selectBests(master population, n best master)
17 end

In the next iteration, the best solutions from the master
population are introduced to the subpopulations in the form of
an archive. In MultiNEAT, the archive is a fixed set of solutions
across generations that can be used for reproduction. The
setArchive method (line 10) defines the external solutions
as the archive and reevaluates them according to the respective
population objective function.

During the reproduction in the subpopulations, the first
parent is randomly selected from the species pool (as in
standard NEAT). However, the second parent is chosen with a
two tournament selection between a random solution from the
species pool and a random solution from the archive. In this
way, the best generalized genomes may guide the search on
the single task environments. Therefore, MultiNEAT performs
cycles where the subpopulations feed their information to the
master population and vice-versa.

In the context of the EvoMan framework, the fitness of each
subpopulation is the outcome of the play against one enemy.
Meanwhile, the fitness in the master population uses multiple
mode for playing against the whole set of training enemies.
The fitness in the multiple mode is the average fitness of each
enemy minus the standard deviation.



IV. EXPERIMENTAL SETUP

For each experiment, we executed 10 independent runs with
the same set of 10 distinct seeds. We used the GNU Parallel
[7] tool to manage the execution of the trials on a Intel(R)
Core(TM) i7-5930K CPU @ 3.50GHz with 6 cores (2 threads
each). The experiment lasted 20 hours on average.

Table I displays the main NEAT parameter values that we
used for all populations. The values for the compatibility
threshold, the distance coefficients, and the weight mutation
probability are the same used by the framework authors in
their previous study [2]. In that work, they evaluated NEAT
(and a few other evolutionary algorithms) on three triples of
enemies as the training sets, which was done based on the
observed performance of NEAT on different pairs of enemies.

TABLE I: NEAT main parameters

Parameter Value
Population sizes 50

Species compatibility threshold 3
Weight distance coefficient 0.4
Disjoint distance coefficient 1

Add node probability 20%
Add connection probability 50%
Weight mutation probability 90%

Survival threshold 20%
Elitism inside species 1

However, for the add node mutation and add connection mu-
tation probabilities, we choose higher values from the original
authors, which were 3% and 5% respectively. We made this
decision because our approach is based on alternating runs
of NEAT with few generations, as described in Section III.
Therefore, we wanted to assure that, during these runs, the
populations could be able to have more structural changes.

Additionally, there are some other NEAT parameters that
were not reported in [2], such as the elitism inside a
species and the survival threshold (the proportion of the best
species individuals able to reproduce). The initial solutions
are feedforward networks in which all inputs are connected
to all outputs with random weights and no hidden layer.
The NEAT-Python implementation also allows to evolve
the activation and aggregation functions from 1, however, we
fixed them to the sigmoid and sum functions, respectively. The
whole parameter configuration file is available together with
the source code.

Moreover, the MultiNEAT have some parameters of its
own. Besides the number of iterations, we must define the
amount of generations for both the subpopulations and the
master populations per iteration. Other parameters are the
number of migrants the subpopulations will send to the master
and how many solutions from the master population will be
introduced in the subpopulations. Table II shows the values
for these MultiNEAT parameters. Notice that we decided to
set the same generation number for all populations, but this
relationship between sub and master populations evolutions
should be further investigated.

The choice of 10 for the migrants from each subpopulation
parameter is to allow the master population the keep its best

TABLE II: MultiNEAT parameters

Parameter Value
Iterations 20

Subpopulation generations 10
Master generations 10

Solutions from subpopulations 10
Solutions from master 10

TABLE III: Times an agent beats the enemy

Test enemy
Training Set 1 2 3 4 5 6 7 8

1,3,4,7 3 0 5 4 10 0 6 3
1,4,6,7 2 5 0 7 5 6 2 5
2,4,6,7 0 10 0 7 5 8 3 6

solutions from the previous iteration, and make them compete
with the best solutions from each mono task NEAT.

During preliminar experiments, we noticed that enemies 5
and 8 were beaten more often, indicating that they are easier
than the others, so we did non include them for training. Then,
we experimented with a few variations of four enemies with
the remaining six. The best results were achieved with the set
of enemies {2,4,6,7}, hence, our final agent was evolved using
this set.

A. Player controller

The player controller is a feedforward neural network gen-
erated by NEAT, with 20 inputs and 5 outputs. The inputs are
normalized in the range [−1, 1], except the two input sensors
that indicate the direction the characters are facing, because
they already are either 1 or -1. The output of the network are
five values in the range [0, 1], where each value corresponds
to one of the five possible actions. The respective action is
performed if the value is higher than 0.5.

V. RESULTS

Table III shows hoy many agents trained with a given enemy
set was able to beat the enemies. In total, there are 10 agents
for each training set. The set {2,4,6,7} had the most wins,
although it was never able to beat enemies 1 and 3. The next
results we show are related to this training set.

In Table IV we can observe the performance of the agents
trained with the set {2,4,6,7}, each with a different initial
random seed. The reported values are the player energy minus
the enemy energy, hence, a value higher than zero means
that the agent have won the match. The enemy 2 was always
beaten, meanwhile, the enemy 7, that is present in the training,
was beaten only three times and with low scores. Interestingly,
the best score was achieved against enemy 8, which was not
present in the training set.

Nevertheless, the most successful agent (ID 8 in Table IV)
was able to beat 6 out of 8 enemies. This is the agent that
we submitted to the competition. Table V reports the required
performance metrics: the player energy, the enemy energy and
the time of the match.



TABLE IV: Performance of the 10 agents trained with the set
{2,4,6,7}

Test enemy
Agent ID 1 2 3 4 5 6 7 8

1 -70.00 56.00 -60.00 48.40 -50.00 -10.00 -10.00 7.00
2 -80.00 24.00 -60.00 -10.00 22.60 -10.00 27.40 44.20
3 -70.00 74.00 -20.00 42.40 55.60 15.40 -10.00 62.80
4 -70.00 38.00 -60.00 0.40 -70.00 29.20 -30.00 -20.00
5 -70.00 4.00 -80.00 -10.00 -80.00 19.60 -10.00 -50.00
6 -80.00 28.00 -60.00 17.80 61.00 1.60 -10.00 -70.00
7 -70.00 52.00 -70.00 36.40 51.40 26.20 -10.00 61.60
8 -80.00 16.00 -80.00 37.00 38.80 22.60 35.80 79.60
9 -100.00 56.00 -80.00 34.00 35.20 5.80 -20.00 -60.00
10 -80.00 48.00 -60.00 -10.00 20.20 14.80 19.00 19.00

TABLE V: Final agent performance metrics

Enemy Player energy Enemy energy Match time
1 0 80 294
2 16 0 242
3 0 80 206
4 37 0 755
5 38.8 0 481
6 22.6 0 327
7 35.8 0 460
8 79.6 0 262

VI. CONCLUSION

This work investigated a multi populational NEAT strategy
for cooperative coevolution of game playing agents. The goal
was to achieve a generalized agent able to beat the set of
eight enemies, but without seeing four of them during the
evolutionary process. In the present state, our approach was
able the learn a strategy that beats 6 out of 8 enemies. Besides
the low achieved scores, the agent performed well against
one enemy that it did not see during training. This indicates
the generalization potential of the approach and that further
investigation must be done to better identify its properties.

Future works include to perform a thorough analysis on the
influence of the archive solutions into the subpopulations and
to monitor the fitness evolution across populations. Addition-
ally, a multi-objective evolutionary algorithm could be applied
on the master population, then guiding the search also on the
diversity of strategies.

REFERENCES

[1] K. d. S. M. de Araújo and F. O. de França, “An electronic-game
framework for evaluating coevolutionary algorithms,” arXiv:1604.00644
[cs], Apr. 2016, arXiv: 1604.00644. [Online]. Available: http://arxiv.org/
abs/1604.00644

[2] K. da Silva Miras de Araujo and F. O. de Franca, “Evolving a generalized
strategy for an action-platformer video game framework,” in 2016 IEEE
Congress on Evolutionary Computation (CEC), Jul. 2016, pp. 1303–1310,
iSSN: null.

[3] L. Miguel Antonio and C. A. Coello Coello, “Coevolutionary Multiob-
jective Evolutionary Algorithms: Survey of the State-of-the-Art,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 6, pp. 851–865,
Dec. 2018.

[4] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through
Augmenting Topologies,” Evolutionary Computation, vol. 10, no. 2,
pp. 99–127, Jun. 2002. [Online]. Available: https://doi.org/10.1162/
106365602320169811

[5] J. Schrum and R. Miikkulainen, “Evolving multimodal behavior
with modular neural networks in Ms. Pac-Man,” in Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’14. Vancouver, BC, Canada: Association
for Computing Machinery, Jul. 2014, pp. 325–332. [Online]. Available:
https://doi.org/10.1145/2576768.2598234

[6] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A Neuroevo-
lution Approach to General Atari Game Playing,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 6, no. 4, pp. 355–366,
Dec. 2014.

[7] O. Tange et al., “Gnu parallel-the command-line power tool,” The
USENIX Magazine, vol. 36, no. 1, pp. 42–47, 2011.


